/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Broker IPC over HTTP

/v History

AARHUS UNIVERSITET

* Inthe 1990, there was a lot of hype about building
distributed systems in the OO paradigm / Broker based

 CORBA
— Version 1 -1991

 Microsoft DCOM
— About the same time ©

* .Net remoting / Java RMI

« Struggled with firewalls, security issues, architectural
mismatch; and rather heavy-weight tooling

/v Broker again

AARHUS UNIVERSITET
« CORBA/DCom are Broker implementations e I

ClientProxy) Servant

—_— I P C Tran S p 0 rt bytes | method(a.b.c) method(a,o.c)

Demarshalls and
marshalls call dispatchs call

« TCP-IP based, IIOP protocol (Corba/Java RMI)
— Marshalling Encode msg
- 1IOP ety |

— Proxy and Servant Programming pEES

» IDL compiler, generates “stub” (proxy) and “skeleton”
(invoker + superclass for servant)

— Name Services Find object
« Naming Service (Corba)
* RMIRegistry (Java)

sends on network receives on network

IPC ServerRequestHandler

byte[] receive()

eV Then Came WWW!

AARHUS UNIVERSITET

« Web was built for humans to browse web pages
« Butitis a strong infrastructure in its own right

— Network of named computers/resources

— Well defined protocol

« HTTP over TPC-IP, -

e
— Strong infrastructure support

» Apache Tomcat, Microsoft IIS, IBM WebSphere,
Eclipse Jetty, Java Servlets, JBoss, ...

Learnability

CS@AU Henrik Baerbak Christensen 4

/v Many of the pieces

AARHUS UNIVERSITET
« WWW as foundation for a Broker?
— IPC Transport bytes
« TCP-IP connected machines talking HTTP
— Marshalling Encode msg

« XML in HTTP messages

* Missing — not the intent of WWW

..........

— Location and Naming Find object
* URLSs defining resources = data/information

request{location, objectld,
nnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnn

Domain

SSSSSS

aaaaaaaaaaaaaa
uuuuuuuuuu

receives on network

nn

CS@AU Henrik Baerbak Christensen ec

/v The missing piece

AARHUS UNIVERSITET
« What to do with no programming / domain layer?

- Option 1: Program without it

* Implement ‘doGet’ and ‘doPost’ (servlets), demarshall XML
* Implement HTTP requests (client), marshall XML

« Option 2: Make a Broker on top of www

— Simple Object Access Protocol / SOAP t J

— Or FRDS.Broker’s URI Tunneling Broker

CS@AU Henrik Baerbak Christensen 6

/v

AARHUS UNIVERSITET

WebServices: SOAP

Simple Object Access Protocol
(Simple???)
The short version

(A longer one at the end of the slide deck)

V4V Broker

AARHUS UNIVERSITET
« The Broker implementations in ‘web services’ tech stack
— IPC Transport bytes
 TCP-IP based, HTTP protocol
— Marshalling Encode msg

 SOAP - on the wire XML format
— “simple object access protocol”

— Proxy and Servant Programming
« WSDL = Web Service Description Language (XML)
— Location and Naming Find object

« UDDI = Universal Description, Discovery and Integration

b The Short Version

AARHUS UNIVERSITET

* You generate WSDL from your interface
— Heavy tooling, and produce tons of un-analyzable code ®

WA-bindi "TeleMed

"impl- TeleMedServant™>
schemas xmlsoap.org/soap/http"/>

antSoapBinding typ:

name=

<wsdlsoap:binding style="document" transport="http-/

— Vendor lock-in to UDDI servers i v

—<wsdl:input name="correctRequest'>
<wsdlsoap:body use="literal"/>

— =wsdl:output name="correctResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output=

dStoreRequest">

— Does not utilize HTTP’s built-in potential
at all, it is just a way to punch through

<wsdlsoap:body use="literal ">
</wsdl:output>

firewalls...

— <wsdl:operation name="getObservat
dl

- i name="getObser
‘ <wsdlsoap:body use="literal"/>

</wsdl:input>

— <wsdl:output name="getObservationResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

—<wsdl:operation name="delete">

dl ation Acti

—<wsdl:input name="deleteRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>

dl

name="deleteR ">

<wsdlsoap:body use="literal"/>
</wsdl:output=
</wsdl:operation>
</wsdl:binding>
— <wsdl:service name="TeleMedServantService">
- dl:port bindi "impl: TeleM Binding” name="TeleMed ant™>
<wsdlsoap:address location="http://localhost:8080/saip filecounter/services/TeleMedServant"/>
</wsdl:port>
| <wsdl:service>
| </wsdl itions>

AU CS Henrik Baerbak Christensen 9

/v

AARHUS UNIVERSITET

FRDS.Broker using HTTP

/v New Delegates in Broker

AARHUS UNIVERSITET
 Easy -
— Just replace the

RequestHandlers
with HTTP delegates

UniRest

SparkJava

CS@AU

«interface» ,R
2 Role 2
Client sid - Y Server side
Dk e method(a,b,c) “~
ClientProxy ‘) ‘ Servant
Domain
method(a,b,c) method(a,b,c)
Demarshalls and

marshalls call dispatchs call

Requestor Marshalling Invoker
request(location, ohjectld, handleRequest(objectid,
operationld, arguments) operationld, byte[])

| sends on network receives on network

ClientRequestHandler IPC ServerRequestHandler
send(address, byte[]) byte[] receive()
’2
N /
N /
IPC [-ToR
Library Library

Henrik Baerbak Christensen

11

/v POST Command Objects

AARHUS UNIVERSITET

« All method calls are considered command objects that
the ClientRequestHandler POST to one particular
resource on the HTTP Server

Henrik Baerbak Christensen

Y o CRH

AARHUS UNIVERSITET
« POST to URL with the marshalled request

dlverride
public String sendToServerAndAwaitReply(String reguest) {
HttpResponse<String> reply;

\tr“f {
reply = Unirest.post(url baseURL + path)

.header(name: "Accept", MimeMediaType.TEXT_PLAIN)
.header(name: "Content-Type", MimeMediaType.TEXT_PLAIN)
.body(regquest).asString();

} catch (UnirestException e) {

throw new IPCException("UniRest POST reguest failed on reguest="

+ reqguest, e);

I

return reply.getBody();

I

e This is the standard implementation in the Broker library

CS@AU Henrik Baerbak Christensen 13

\ 4
AARHUS UNIVERSITET

 Accept POST

* Do upcall

e ... andreply

« Standard impl. in the
library

CS@AU

And SRH

a0verride

public void start() {

port(port);

post(tunnelRoute, (reg,res) - {
long startTime = System.currentTimeMillis();
String marshalledRequest = regq.body();

logger.info("method=P0ST, context=reguest, request={}", marshalledRequest);

String reply = invoker.handleReguest(marshalledRequest);

lastVerb = reg.requestMethod();

res.status(HttpServlietResponse.SC_0K);

res.type(MimeMediaType.TEXT_PLAIN);

long responseTime = System.currentTimeMillis() - startTime;
logger.info("method=handleRequest, context=reply, reply={}, responseTime_ms={}",

reply, responseTime);

return reply;

b

Henrik Baerbak Christensen 14

eV Discussion

AARHUS UNIVERSITET

« All methods are translated to POST on a single
path /tunnel
— You can set another path in the Broker, but still...

Hypermedia

 Thatis, the Broker do not use
— HTTP verbs at all
— Resources/paths for anything * URI Tunnel

« (Butit does use the HTTP Status codes)
 WebServices/SOAP does the same thing.

AU CS Henrik Baerbak Christensen 15

eV Discussion

AARHUS UNIVERSITET

« Actually the URI Tunnel code is quite a lot smaller than
our socket code

— And it is also multi-threaded, as SparkJava is based on Jetty
which has a multi-threaded implementation...

 Starts with a pool of 8 threads, but can increase to 200...

« Again, reusing well engineered frameworks saves time,
money, and agony ©

/v

AARHUS UNIVERSITET

WebServices: SOAP

Simple Object Access Protocol
(Simple???)
The long version...

eV Broker

AARHUS UNIVERSITET
« The Broker implementations

— IPC Transport bytes
 TCP-IP based, HTTP protocol

— Marshalling Encode msg
« SOAP — on the wire XML format

— Proxy and Servant Programming
« WSDL = Web Service Description Language (XML)

— Location and Naming Find object

« UDDI = Universal Description, Discovery and Integration

/v

AARHUS UNIVERSITET

URLs + SOAP

HTTP

CS@AU

The three layers

Client side -

ClientProxy

method(a,b,c)

marshalls call

«interface»
Role

method(a,b,c)

< Server side

Domain

Requestor

Marshalling

operationld, arguments)

request(location, objectld,

sends on network

ClientRequestHandler

Servant

method(a,b,c)

Demarshalls and
dispatchs call

Invoker

handleRequest(objectld,
operationld, byte[])

/ receives on network

IPC

send(address, byte[])

ServerRequestHandler

. [

bytel[] receive()

N
v IPC

Library

Henrik Baerbak Christensen

7/

IPC 128
Library

19

/v Example: TeleMed in SOAP

AARHUS UNIVERSITET

— Browsed heavily to find Eclipse tutorials
— http://www.vogella.com/tutorials/EclipseWTP/article.html

— http://www.java2blog.com/2013/03/soap-web-service-example-in-java-
using.html

» Copy-n-Pasted TeleMed interface + few Domain classes into project
on a VM (avoid polluting my machine’s IDE)

 Nullified actual implementations
— No business functionality, not the architectural question

CS@AU Henrik Baerbak Christensen 20

http://www.vogella.com/tutorials/EclipseWTP/article.html
http://www.java2blog.com/2013/03/soap-web-service-example-in-java-using.html
http://www.java2blog.com/2013/03/soap-web-service-example-in-java-using.html

o Example

AARHUS UNIVERSITET

=} Java EE - http://localhost:8080/saip.filecountercClient/sampleTeleMedServantProxy/TestClient.jsp - Eclipse -+ x
File Edit Navigate Search Project Run Window Help

> - ® BIH @ R0 QBB P LG 0 v ‘QuickAccess HE.’ &' Java |3 JavaEE|
[t4 Project Explorer B & T = B @ Web Services Te 22 ! = B 5= Outlin =2 = B8
v i saip filecounter 4http://lo(alhost:soso;'sai filecounterClient/sampleTeleMedServantProxy/TestClient.jsp ERI =

» fig Deployment Descriptor: saip.filecounter
w8 Java Resources MethOdS |nput5
v#®src
» # saip.filecounter.dao
» 8 saip.filecounter.servlet
¥ i saip.telemed
b [7] ClinicalQuantity.java

Anoutline is not available.

getEndpoint() teleObs:

setEndpoint(java.lang.! . . e
getTeleMedServant{) patientld: pido1l
correct(java.lang.Strin/| systolic:

processAndStore(saip. displayName: [

b [l TeleMed java getObservation(java.la i
» [1] TeleMedservant.java delete(java.lang.String unit:

» 1] TeleObservationjava code:
> ®, Libraries

s s s 8 s s

i value:
> =i JavaScript Resources diastoli
" lastolic:
> = build
¥ (= WebContent displayName:
¥ &= META-INF unit:
P = WEB-INF code:
v i wsdl
o ﬁ value: Motilla Firefox
b2 saip.filecountercCli R It
b= Servers esu
Otm16 “This XML filo does not apposr to

http://localhost:8080/saip.filecounter/services/TeleMedS

B2 JSR-109 Web Services

4 Servers 82 [

- <wsdl:types>
-~ <schema “qualified” “hitp:/elemed saip'>
- <element name="correct'>

» [Tomcat v7.0 Server at localhost [Started, Synchronized]

<jcomplexType>
<felement>
- <complexType name="ClinicalQuantity">

~<complexType name~"TeleObservation">
- <sequence>

diast -alQuantity*/>
name="patientid” nill o />
name="systolic* nillabl 3 I
Jsequence>
</complexType>
~<element name-="correctResponse*>
- <complexType>
—<sequence>
<element name="correctReturn" type="xsd-booloan’/>

Henrik Baerbak Christe P

\ 4
AARHUS UNIVERSITET

— <wsdl:definitions targetNamespace="http://telemed saip">

—<i--
WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

-
—<wsdl:types>
—<schema elementFormDefault="qualified" targetNamespace="http://telemed saip">
— <element name="correct">
—<complexType>
— <sequence>
<element name="uniqueld" type="xsd string"/>
<element name="to" type="1mpl:TeleObservation"/>

</sequence>
</complexType>
</element=>
—<complexType name="Clinical Quantity">
— <sequence> —

<element name="code" nillable="true" type="xsd:string"/>
<element name="displayName" millable="true" type="xsdstring" />
<element name="unit" nillable="true" type="xsd:string"/=
<element name="value" type="xsd:double"/>

</sequence>
</complexType>
—<complexType name="TeleObservation"=
— <sequence> ——

<element name="diastolic" nillable="true" type="impl:Clinical Quantity"/>
<element name="patientId" nillable="true" type="xsd:string"/>
<element name="systolic" nillable="true" type="1mpl:Clinical Quantity"/=
</sequence>
</complexType>

Data types

CS@AU

Henrik

— <wsdl:binding name="TeleMedServantSoapBinding" type="impl:TeleMedServant">

<wsdlsoap:binding style="document" transport="http-//schemas xmlsoap org/soap/'http"/>
—<wsdl:operation name="correct">
<wsdlsoap:operation soapAction=""/>
—=wsdl:input name="correctRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
— <wsdl:output name="cormrectResponse">
<wsdlsoap:body use="literal"/> .
</wsdl:output> @) perations
</wsdl:operation=
— . 1 =" —

<wsdlsoap:operation soapAction=""/>
— <wsdl:input name="processAndStoreRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
— <wsdl:output name="processAndStoreResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
—<wsdl:operation name="getObservation">
<wsdlsoap:operation soapAction=""/>
— <wsdl:input name="getObservationRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
— =wsdl:output name="getObservationResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output=
</wsdl:operation>
—<wsdl:operation name="delete">
<wsdlsoap:operation soapAction=""/>
— <wsdl:input name="deleteRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
— <wsdl:output name="deleteResponse> . .
<wsdlsoap:body use="literal"/> B I n d I n g
</wsdl:output=
</wsdl:operation>
</wsdl:binding>
— <wsdl:service name="TeleMedServantService ">
—<wsdl:port binding="impl: TeleMedServantSoapBinding" name="TeleMedServant">
<wsdlsoap:address location="http://localhost:8080/saip_filecounter/services/ TeleMedServant /=

BeefakrChristensen 22

</wsdl:definitions>

/v

AARHUS UNIVERSITET
 IHE XDSb Repository WSDL

— <wsdl: definitions name="DocumentEepositoryService” targetlY amespace="http /tempun. org >
— <wsp:Policy wsw:Id="¥DEReposttery_HTTP Endpoint_policy"=>
— =wsp: ExactlyOne>
— <wsp:All>
<wsoma: OptimizedMimeSerialization'>
<wsaw: UsingAddressing’>
<fwsp: All>
=fwsp:ExactlyOne>
<fwsp: Policy>
<wsdl:import namespace="urn:ihe itixds-b:2007" location="httpfa02447: 1026/ dsZerviceZ D 3 ep osttory Pws dl=ws 10" >
<wsdl:types/>
— <wsdl:hinding name="XDZEepostory HTTP Endpomt" type="10.XD5Eeposttory">
<wsp:PolicyReference URT="#¥DSRepository HTTP Endpoint_policy"f=
<soapl2:hinding transport="httpfzchemas zmlzoap orglzcap/http /=
— <wsdl: operation name="Provide AndEegisterDocument=et">
<soapl2:operation soapAction="urrthe:tt 2007 Pronde AndRegisterDocumentSet-b" style="document"/>
— <wsdLl:input>
<soapl2:hody use="literal"/>
<fwsdl:input>
— <wsdl: output>
<soapl2:hody use="literal"/>
<fwsdl: output>
<fwsdl:operation>

Another example

CS@AU Henrik Baerbak Christensen 23

Y o Why not?
AARHUS UNIVERSITET
« Basically WSDL+SOAP+UDDI is the Broker which simply
use WWW and HTTP as raw IPC
— Aka URI Tunneling
— Avoid the firewall and security issues though

* But it iIs heavyweight
— Tool intensive to make even simple service
— Bulky message format, low analyzability

— Does not utilize HTTP’s built-in potential at all, it is just a way to
punch through firewalls...

/v Richardson’s Maturity model

AARHUS UNIVERSITET

* From low maturity to high maturity

— URI Tunnel

« Justuse HTTP as IPC layer
— SOAP, WSDL, WebServices .
— And our URI Tunnel Broker! Hypermedia
— HTTP

 Use CRUD Verbs on resources

_ Hypermedia * URI Tunnel

» Use links to define workflows
« Aka ‘HATEOAS’

CS@AU Henrik Beerbak Christensen 25

